31 research outputs found

    Design and Evaluation of a Percutaneous Fragment Manipulation Device for Minimally Invasive Fracture Surgery

    Get PDF
    Reduction of fractures in the minimally invasive (MI) manner can avoid risks associated with open fracture surgery. The MI approach requires specialized tools called percutaneous fragment manipulation devices (PFMD) to enable surgeons to safely grasp and manipulate fragments. PFMDs developed for long-bone manipulation are not suitable for intra-articular fractures where small bone fragments are involved. With this study, we offer a solution to potentially move the current fracture management practice closer to the use of a MI approach. We investigate the design and testing of a new PFMD design for manual as well as robot-assisted manipulation of small bone fragments. This new PFMD design is simulated using FEA in three loading scenarios (force/torque: 0 N/2.6 Nm, 75.7 N/3.5 N, 147 N/6.8 Nm) assessing structural properties, breaking points, and maximum bending deformations. The PFMD is tested in a laboratory setting on Sawbones models (0 N/2.6 Nm), and on ex-vivo swine samples (F = 80 N ± 8 N, F = 150 ± 15 N). A commercial optical tracking system was used for measuring PFMD deformations under external loading and the results were verified with an electromagnetic tracking system. The average error difference between the tracking systems was 0.5 mm, being within their accuracy limits. Final results from reduction maneuvers performed both manually and with the robot assistance are obtained from 7 human cadavers with reduction forces in the range of (F = 80 N ± 8 N, F = 150 ± 15 N, respectively). The results show that structurally, the system performs as predicted by the simulation results. The PFMD did not break during ex-vivo and cadaveric trials. Simulation, laboratory, and cadaveric tests produced similar results regarding the PFMD bending. Specifically, for forces applied perpendicularly to the axis of the PFMD of 80 N ± 8 N deformations of 2.8, 2.97, and 3.06 mm are measured on the PFMD, while forces of 150 ± 15 N produced deformations of 5.8, 4.44, and 5.19 mm. This study has demonstrated that the proposed PFMD undergoes predictable deformations under typical bone manipulation loads. Testing of the device on human cadavers proved that these deformations do not affect the anatomic reduction quality. The PFMD is, therefore, suitable to reliably achieve and maintain fracture reductions, and to, consequently, allow external fracture fixation

    Towards Robot-Assisted Fracture Surgery For Intra-Articular Joint Fractures

    Get PDF
    Background Treating fractures is expensive and includes a long post-operative care. Intra-articular fractures are often treated with open surgery that require massive soft tissue incisions, long healing time and are often accompanied by deep wound infections. Minimally invasive surgery (MIS) is an alternative to this but when performed by surgeons and supported by X-rays does not achieve the required accuracy of surgical treatment. Methods Functional and non-functional requirements of the system were established by conducting interviews with orthopaedic surgeons and attending fracture surgeries at Bristol Royal Infirmary to gain first-hand experience of the complexities involved. A robot-assisted fracture system (RAFS) has been designed and built for a distal femur fracture but can generally serve as a platform for other fracture types. Results The RAFS system has been tested in BRL and the individual robots can achieve the required level of reduction positional accuracy (less than 1mm translational and 5 degrees of rotational accuracy). The system can simultaneously move two fragments. The positioning tests have been made on Sawbones. Conclusions The proposed approach is providing an optimal solution by merging the fracture reduction knowledge of the orthopaedic surgeon and the robotic system's precision in 3D

    FORCE-TORQUE MEASUREMENT SYSTEM FOR FRACTURE SURGERY

    Get PDF
    One of the more difficult tasks in surgery is to apply the optimal instrument forces and torques necessary to conduct an operation without damaging the tissue of the patient. This is especially problematic in surgical robotics, where force-feedback is totally eliminated. Thus, force sensing instruments emerge as a critical need for improving safety and surgical outcome. We propose a new measurement system that can be used in real fracture surgeries to generate quantitative knowledge of forces/torques applied by surgeon on tissues.We instrumented a periosteal elevator with a 6-DOF load-cell in order to measure forces/torques applied by the surgeons on live tissues during fracture surgeries. Acquisition software was developed in LabView to acquire force/torque data together with synchronised visual information (USB camera) of the tip interacting with the tissue, and surgeon voice recording (microphone) describing the actual procedure. Measurement system and surgical protocol were designed according to patient safety and sterilisation standards.The developed technology was tested in a pilot study during real orthopaedic surgery (consisting of removing a metal plate from the femur shaft of a patient) resulting reliable and usable. As demonstrated by subsequent data analysis, coupling force/torque data with video and audio information produced quantitative knowledge of forces/torques applied by the surgeon during the surgery. The outlined approach will be used to perform intensive force measurements during orthopaedic surgeries. The generated quantitative knowledge will be used to design a force controller and optimised actuators for a robot-assisted fracture surgery system under development at the Bristol Robotics Laboratory

    Image-Based Robotic System for Enhanced Minimally Invasive Intra-Articular Fracture Surgeries

    Get PDF
    Abstract: Robotic assistance can bring significant improvements to orthopedic fracture surgery: facilitate more accurate fracture fragment repositioning without open access and obviate problems related to the current minimally invasive fracture surgery techniques by providing a better clinical outcome, reduced recovery time, and health-related costs. This paper presents a new design of the robot-assisted fracture surgery (RAFS) system developed at Bristol Robotics Laboratory, featuring a new robotic architecture, and real-time 3D imaging of the fractured anatomy. The technology presented in this paper focuses on distal femur fractures, but can be adapted to the larger domain of fracture surgeries, improving the state-of-the-art in robot assistance in orthopedics. To demonstrate the enhanced performance of the RAFS system, 10 reductions of a distal femur fracture are performed using the system on a bone model. The experimental results clearly demonstrate the accuracy, effectiveness, and safety of the new RAFS system. The system allows the surgeon to precisely reduce the fractures with a reduction accuracy of 1.15 mm and 1.3°, meeting the clinical requirements for this procedure

    RAFS: A computer-assisted robotic system for minimally invasive joint fracture surgery, based on pre- and intra-operative imaging

    Get PDF
    The integration of minimally invasive robotic assistance and image-guidance can have positive impact on joint fracture surgery, providing a better clinical outcome with respect to the current open procedure. In this paper, a new design of the RAFS surgical system is presented. The redesign of the robotic system and its integration with a novel 3D navigation system through a new clinical workflow, overcomes the drawbacks of the earlier prototype. This makes the RAFS surgical system more suitable to clinical scenarios in the operating theatre. System accuracy and effectiveness are successfully demonstrated through laboratory trials and preliminary cadaveric trials. The experimental results demonstrate that the system allows the surgeon to reduce a 2-fragment distal femur fracture in a cadaveric specimen, with a reduction accuracy of up to 0.85 mm and 2.2°. Preliminary cadaveric trials also provided a positive and favorable outcome pointing to the usability and safety of the RAFS system in the operating theatre, potentially enhancing the capacity of joint fracture surgeries

    Intra-articular knee haemangioma originating from the anterior cruciate ligament: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Synovial haemangioma is a rare intra-articular benign tumour, which may arise from any synovium-lined surface, but particularly in the knee joint. Synovial haemangioma originating from the anterior cruciate ligament has not been reported previously.</p> <p>Case presentation</p> <p>A 34-year-old man presented with a history of intermittent knee pain, locking and swelling.</p> <p>Conclusion</p> <p>Knee intra-articular haemangioma, a very rare benign tumour, is often misdiagnosed. Magnetic resonance imaging is effective in detecting this lesion and should be performed in cases of persistent knee swelling and pain.</p

    A Cilia-inspired Closed-loop Sensor-actuator Array

    Get PDF
    © 2018, Jilin University. Cilia are finger-like cell-surface organelles that are used by certain varieties of aquatic unicellular organisms for motility, sensing and object manipulation. Initiated by internal generators and external mechanical and chemical stimuli, coordinated undulations of cilia lead to the motion of a fluid surrounding the organism. This motion transports micro-particles towards an oral cavity and provides motile force. Inspired by the emergent properties of cilia possessed by the pond organism P. caudatum, we propose a novel smart surface with closed-loop control using sensor-actuators pairings that can manipulate objects. Each vibrating motor actuator is controlled by a localised microcontroller which utilises proximity sensor information to initiate actuation. The circuit boards are designed to be plug-and-play and are infinitely up-scalable and reconfigurable. The smart surface is capable of moving objects at a speed of 7.2 millimetres per second in forward or reverse direction. Further development of this platform will include more anatomically similar biomimetic cilia and control

    An Integrated Kinematic Modeling and Experimental Approach for an Active Endoscope

    Get PDF
    Continuum robots are a type of robotic device that are characterized by their flexibility and dexterity, thus making them ideal for an active endoscope. Instead of articulated joints they have flexible backbones that can be manipulated remotely, usually through tendons secured onto structures attached to the backbone. This structure makes them lightweight and ideal to be miniaturized for endoscopic applications. However, their flexibility poses technical challenges in the modeling and control of these devices, especially when closed-loop control is needed, as is the case in medical applications. There are two main approaches in the modeling of continuum robots, the first is to theoretically model the behavior of the backbone and the interaction with the tendons, while the second is to collect experimental observations and retrospectively apply a model that can approximate their apparent behavior. Both approaches are affected by the complexity of continuum robots through either model accuracy/computational time (theoretical method) or missing complex system interactions and lacking expandability (experimental method). In this work, theoretical and experimental descriptions of an endoscopic continuum robot are merged. A simplified yet representative mathematical model of a continuum robot is developed, in which the backbone model is based on Cosserat rod theory and is coupled to the tendon tensions. A robust numerical technique is formulated that has low computational costs. A bespoke experimental facility with precise automated motion of the backbone via the precise control of tendon tension, leads to a robust and detailed description of the system behavior provided through a contactless sensor. The resulting facility achieves a real-world mean positioning error of 3.95% of the backbone length for the examined range of tendon tensions which performs favourably to existing approaches. Moreover, it incorporates hysteresis behavior that could not be predicted by the theoretical modeling alone, reinforcing the benefits of the hybrid approach. The proposed workflow is theoretically grounded and experimentally validated allowing precise prediction of the continuum robot behavior, adhering to realistic observations. Based on this accurate estimation and the fact it is geometrically agnostic enables the proposed model to be scaled for various robotic endoscopes
    corecore